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Biological membranes — Energization by the proton potential difference

Biological membranes of energy metabolism in Mitochondria, Chloroplasts and micro-organisms perform their function by membrane-energization, which isthe
generation of an electrochemical proton potential difference across amembrane. This couples the energy of respiration, photosynthesis or ion transport to membrane
proteins as ATP-synthase and Cytochrome-Oxidoreductases: function by energetic coupling during proton transport.

Furthermore the membrane potential acts as an effector in the molecular regulation of several proteins: structural regulation by the physical membrane.

While the biological relevanceis clear, the effect of the electrochemical membrane potential difference on lipid and protein structure and function has to be
investigated at the molecular level. Those processes can be studied with liposomes as homogenous model membranes using time resolved methods (transient states).

Liposomes as model membranes — Reconstitution and Energization by pH-jump
2y
jg" 25:%:; Theenergized membrane state was estimated by spectroscopy and
TR-SANS of liposomes after alarge pH-jump (?pH > 1).
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The complex proteoliposomes are used for function investigations [1,2] , while simpler
vesicles (only 1 protein molecule/vesicle) and pure lipid vesicles with entrapped Structure dyn amics estimation by

pH-indicator dye are suitable for H*-transport and structure dynamics investigations.

Materaialsand Methods:
Liposomes (small unilamellar vesicles SUV) with reconstituted ATP-synthase from Micrococcus luteus
ATCCA4698 were prepared from DMPC-D, and matched by 85% D,O, while protein-free SUV from protona
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Phosphatidyl-Cholins (DMPC, DOePC, ShPC) were investigated in H,0-buffer (pH8, 10% glyceral). overflow
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Asnovel results we observed achangein lipid bilayer The experiments are currently extended to ATP-synthase-liposomes. In those proteoliposomes the lipid
structure upon membrane energization (? pH > 0.5). The entity was matched by contrast variation, i.e. application of D,O/H,0O-mixtures as solvent. The liposomes
thickness of the hydrophobic core shrinked by 1 Angstroem  from DMPC-Dy, were matched by 85% D,O-buffer, while the lipid contributed 98% of the particle mass.
while no swelling (liposome size change by water uptake) After subtraction of the neutron scattering of matched protein-free reference liposomes, the scattering
was observed in the choosen system (10% glycerol-buffer). contribution of the protein in situ was obtained and compared to the neutron scattering of purified ATP-
Spectroscopic experiments with pH-indicator entrapped synthase in detergent solution (5 mM TDOC, 10% glycerol).

ApH<0,3 ApH>0,4

liposomes showed an increase of the proton permeability by
an order, which is consistent with atransition of transient
hydrogen bond chain (tHBC) pores of diffusion conntrolled
type-C to type-A of longer lifetime.

TR - SANS of SBL-liposomes after a pH-jump, At = 4s
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